Clustering Ensemble Selection Considering Quality and Diversity

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Clustering Ensemble Selection Considering Quality and Diversity

Information clustering means classifying information or partitioning some samples in clusters such that samples inside each cluster have maximum similarity to each other and maximum distance from other clusters. As clustering is unsupervised, selecting a specific algorithm for clustering of an unknown set may fail. As a consequence of problem complexity and deficiencies in basic clustering meth...

متن کامل

A new ensemble clustering method based on fuzzy cmeans clustering while maintaining diversity in ensemble

An ensemble clustering has been considered as one of the research approaches in data mining, pattern recognition, machine learning and artificial intelligence over the last decade. In clustering, the combination first produces several bases clustering, and then, for their aggregation, a function is used to create a final cluster that is as similar as possible to all the cluster bundles. The inp...

متن کامل

The ensemble clustering with maximize diversity using evolutionary optimization algorithms

Data clustering is one of the main steps in data mining, which is responsible for exploring hidden patterns in non-tagged data. Due to the complexity of the problem and the weakness of the basic clustering methods, most studies today are guided by clustering ensemble methods. Diversity in primary results is one of the most important factors that can affect the quality of the final results. Also...

متن کامل

Diversity in Ensemble Feature Selection

Ensembles of learnt models constitute one of the main current directions in machine learning and data mining. Ensembles allow us to achieve higher accuracy, which is often not achievable with single models. It was shown theoretically and experimentally that in order for an ensemble to be effective, it should consist of high-accuracy base classifiers that should have high diversity in their pred...

متن کامل

Ensemble Selection Using Diversity Networks

An ideal ensemble is composed of base classifiers that perform well and that have minimal overlap in their errors. Eliminating classifiers from an ensemble based on a criterion that reflects poor classification performance and error redundancy with peer classifiers can improve ensemble performance. The Diversity Networks method asymmetrically evaluates each pair of classifiers as a linear combi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Research in Computing Science

سال: 2015

ISSN: 1870-4069

DOI: 10.13053/rcs-102-1-8